
Structural crossover in dense irreversibly aggregating particulate systems

D. Fry,* A. Chakrabarti, W. Kim, and C. M. Sorensen
Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506-2601, USA

(Received 9 October 2003; published 1 June 2004)

Cluster-cluster aggregation has been simulated by off-lattice Monte Carlo methods for diffusion-limited
(DLCA), ballistic-limited, and reaction-limited cluster aggregation classes. We find that as the system evolves
and becomes dense, the largest cluster develops a hybrid structure with mass fractal dimensionDf .2.6 over
large length scales, while at smaller length scales, the early time dilute-limit fractal structure is frozen in. The
largest cluster is thus an aggregate of smaller aggregates with a different fractal dimension, and we call it a
“superaggregate.” The crossover length separating the two morphologies, which we call the critical radius of
gyration, can be calculated based on a simple theory that assumes a monodisperse cluster size distribution. This
agrees well with simulation results for DLCA. However, for other classes we find that the increasing polydis-
persity in cluster size pushes the simulated crossover length radius of gyration to values systematically larger
than the predicted value.
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I. INTRODUCTION

The sol-gel transition has been extensively studied by
both chemists and physicists. Aggregation in a dilute sol has
been well understood since the early part of the last century,
while percolation theory has been widely used throughout
the past three decades to describe both the transition to a
dense state and the gel itself. For instance, shear viscosity
and elastic moduli, relaxation times, and both long and short
time diffusion coefficients of colloidal and polymeric sys-
tems show behavior near the sol-gel transition point reminis-
cent of critical phenomena usually associated with percola-
tion [1]. However, the details of the evolution from dilute to
crowded, is largely unknown. As a first step toward under-
standing this evolution, we have recently carried out large-
scale off-lattice Monte Carlo(OLMC) simulations[2] of the
kinetics of diffusion-limited cluster aggregation(DLCA)
over the entire range of evolution of the system—from dilute
to crowded. The goal of the present paper is to provide a
coherent description of themorphological changesthat takes
place as the system evolves from the dilute to the crowded
state.

It is well known that in the dilute limit, DLCA process
leads to the formation of fractal clusters characterized by a
fractal dimension,Df .1.8. If such an aggregation process is
continued for a long time, the system becomes dense and
ultimately gels. Several groups in the past have shown simi-
larities between the structure of DLCA clusters near the gel
point and percolation clusters. For example, DLCA clusters
at the gel point are shown to have the samelarge-scalemass
fractal dimensionDf .2.6 as spanning(backbone) percola-
tion clusters[3–5]. A question then naturally arises: how
does the DLCA cluster structure cross over from the dilute
limit characterized by a fractal dimension of 1.8 to the dense

gel state characterized by a fractal dimension of 2.6? Past
work was not able to provide a precise answer to this ques-
tion for the following reason. To study this crossover, one
needs to start from a dilute state and follow the evolution of
the system for a long time until it becomes crowded and
ultimately gels. In contrast, much of the past simulation work
has been limited to either(i) small monomer volume frac-
tions fv carried out for a limited time, so that cluster crowd-
ing is yet to substantially modify the cluster morphology or
(ii ) to high monomer volume fractions[3–5], where the sys-
tem begins evolving already in a crowded state and any sig-
nature of a crossover from dilute to dense is lost. One study
in two dimensionsdoes address a structural crossover in
DLCA clusters[5]. The results, analyzed in real space, show
a crossover from the predicted two-dimensional dilute-limit
mass fractal dimension to 2d percolation. However, the
monomer volume fractions studied were quite large(ranging
from 10% to 70%) and the gel-limit structural details were
severely limited due to small system sizes. More importantly,
no physical explanation was provided as to why such a
crossover should exist.

We address this question ofstructural crossoverby bridg-
ing the gap between dilute and dense regimes in irreversibly
aggregating sols through large scalethree-dimensionalsimu-
lation of several relevant models. Besides the previously
mentioned DLCA model, we also consider both reaction-
limited cluster aggregation(RLCA) model and ballistic-
limited cluster aggregation(BLCA) model. By starting from
a dilute state and allowing the system to evolve until it gels,
we clearly demonstrate that the largest cluster develops a
hybrid structure with mass fractal dimensionDf .2.6 over
large length scales, while at smaller length scales the early
time dilute-limit fractal structure, characterized by the par-
ticular kinetic model used in the simulation, is frozen in. The
largest cluster is thus an aggregate of smaller aggregates with
a different fractal dimension, and we call it a “superaggre-
gate.” We then show that this crossover in mass fractal di-
mension occurs at a critical cluster size, which we call the
critical radius of gyration. Such a criticality in size has been
suggested in previous studies[5–7], vaguely implying a pos-
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sible crossover in structure, but no detailed analysis was
given. We, however, explicitly quantify the crossover in
structure, in terms of a crossover length scale mentioned
above, and provide a physically motivated model of how this
length scale depends on monomer volume fraction and mass
fractal dimension. In addition, a striking similarity between
our DLCA simulation results for the structure factor and
static light scattering results in soot clusters is found, both
showingDf .2.6 over large length scales andDf .1.8 over
smaller length scales.

The rest of the paper is organized as follows. We first
outline our simulation method. A discussion on how we de-
termine cluster structure in reciprocal and real space and our
motivations for focusing on reciprocal space analysis fol-
lows. As past simulation work on the sol-gel transition has
dealt with diffusion-limited cluster aggregation, we first ad-
dress the evolution of cluster structure for this type of aggre-
gation and develop a simplified model, giving physical
meaning to the newly found structural crossover length scale.
To further test the validity of our model and understand this
crossover for a broad class of aggregation schemes we fol-
low with simulation results for ballistic-limited and reaction-
limited cluster aggregation, comparing the simulated cross-
over length to our theoretical predictions as a function of
mass fractal dimension and polydispersity in cluster size.
The “percolationlike” large length scale structure is studied
next and contrasted against the spanning backbone cluster
from our kinetic models. Subsequently, we compare our re-
sults with several experimental studies in colloids and aero-
sols and conclude with a brief discussion of possibly why
this structural crossover has not been seen to date in aggre-
gating colloids.

II. SIMULATION METHOD

In the absence of external forces aggregation of particu-
late dispersions is governed almost entirely by the relative
strengths of attractive and repulsive interactions between the
dispersed particles[8]. If the repulsion is entirely suppressed,
and the attractive potential negligible except at particle con-
tact, the aggregation rate is limited only by the particle dy-
namics, which in general is diffusive(random walk) or bal-
listic (linear trajectory, important in rarified gases). Upon
colliding, clusters “stick” together with unit probability
Pstick. If there is some degree of repulsion, not all collisions
result in clusters getting close enough to stick together and
Pstick,1. Typically, the repulsive barrierEb between colloi-
dal particles is<50–100 MeV[8]. The probability then, at
room temperature, that two particles stick together isPstick
=exps−Eb/kBTd<10−3. With these in mind many physical
systems can be separated into essentially three aggregation
classes: DLCA, BLCA, and RLCA. We model these three
aggregation classes with the following criteria:

(1) DLCA: diffusive cluster motion,Pstick=1.
(2) BLCA: ballistic (linear trajectory) cluster motion,

Pstick=1.
(3) RLCA: diffusive cluster motion,Pstickø10−3.
In all models presented we assume that the attractive po-

tential is infinite at particle contact, i.e., clusters stick to-
gether irreversibly upon colliding.

Using the above listed modeling scheme, we have per-
formed large scale off-lattice Monte Carlo cluster-cluster ag-
gregation simulations for diffusion-limited, ballistic-limited,
and reaction-limited aggregation classes in three dimensions.
We begin by randomly placing off-latticeNm monomers in a
cubic box of side lengthL at monomer volume fractionsfv
=0.0005,0.001,0.005,0.01, and 0.1. At timet=0 the number
of clusters isNcs0d=Nm, of sizeN=1 monomer per cluster.
The simulation then proceeds by first randomly picking, with
probability Nc

−1, a cluster of sizeN. This cluster is moved,
with probability N−1/Df, one monomer diameter in either a
randomly chosen direction for the DLCA and RLCA classes,
or along a straight line, randomly oriented trajectory for
BLCA, whereDf is the well-known dilute-limit mass fractal
dimension of a cluster in each respective aggregation class
[9–12]. Each time a cluster is picked, the time, measured in
Monte Carlo steps per cluster, is incremented byNc

−1 regard-
less of whether the cluster has moved. If two clusters collide
the motion is adjusted in order to correct for any overlap
between particles and the two stick together with probability
Pstick.

The functionality with time of the ratio of the nearest-
neighbor separationRnn to radius of gyrationRg is Rnn/Rg
~ t−zsd−Dfd/dDf, where the kinetic exponentz.0 [2]. z is re-
lated to the aggregation kernel homogeneityl, i.e., z=1/s1
−ld [13]. SinceDf ,d the space dimension, this ratio de-
creases with time[2,14]. Consequently, the aggregates be-
come increasingly crowded as the system evolves. This is
true for all three aggregation classes. The degree of cluster
crowding is measured by calculation of thecluster volume
fraction fv

c available in the system at timet, where

fv
cstd =

4p

3L3SDf + 2

Df
D3/2

o
i=1

Ncstd

Rg,i
3. s1d

This form for fv
c uses a reasonable definition of the cluster

perimeter radiusRp [15], where

Rp
2 = SDf + 2

Df
DRg

2. s2d

Throughout the results to follow, “dilute” and “dense,” or
“early” and “late” time corresponds tofv

cstd!1 and fv
cstd

.1, respectively. The cluster number, size distribution along
with its moments, cluster volume fraction, and radius of gy-
ration are monitored throughout the simulation. The actual
gel point is determined by looking for the first system-
spanning cluster.

To investigate cluster structure as the system evolves from
dilute to dense and ultimately gels, it is important that the
clusters are allowed to grow to a size where crowding be-
comes substantialsfv

c.1d, and yet there are enough clusters
left in the system to form a reasonable statistical average.
Setting fv

c=1 in Eq. (1), assuming a monodisperse cluster
size distribution, fractal clusterssN,Rg

Dfd, and the number
of clusters at the gel pointNc,G,100, we estimate the num-
ber of monomers needed to see a transition to the dense state.
All OLMC simulations presented here have been done at
very large system sizes ranging from 83105 to 33106 to
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monomers and box sizesL from 162 to 580 monomer diam-
etersdm=2a, wheredm=1. All results are an average over 5
or more statistically independent trials.

III. DETERMINATION OF AGGREGATE STRUCTURE

A. Reciprocal space analysis

Light scattering is one of the most frequently used tools
for investigating aggregate structure. The intensity of elasti-
cally scattered light for a system ofN discrete scattering
centers can be written as,

IsqWd = NFsqWdSsqWd, q = uqW u =
4p

l
sinSu

2
D , s3d

whereSsqWd is the static structure factor

SsqWd =
1

N
o
l,m

N

expfiqW · srWl − rWmdg, s4d

qW =kW f −kW i is the scattering wave vector, or vector difference
between the scattered and incident wave,u is the scattering
angle, andl the wavelength of light. Because each scattering
center is treated as a spherical particle of uniform density,
Eq. (4) reduces to

SsqWd =
1

N
Uo

l=1

N

expsiqW · rW,dU2

=
1

N
Uo

l=1

N

scossqW · rW,d + i sinsqW · rW,ddU2

, s5d

andFsqWd→Fsqd, the well-known form factor for a sphere,

Fsqd = F3 sinsqad − qa cossqad
sqad3 G2

. s6d

All systems that we model here are isotropic in both cluster
position and orientation. We thus perform a spherical aver-
age, i.e.,SsqWd→Ssqd, by selecting over 100 differentqW val-
ues of constant magnitude. This is done by generating the
anglessu ,fd according to a uniform differential solid angle
dV. q is then calculated from,

qW = q0fsinsudcossfdê1 + sinsudsinsfdê2+cossudê3g, s7d

whereêk is thekth cartesian unit vector. The most important
feature in calculation ofIsqd is q itself. It has units of inverse
length, and thus probes length scales ofq−1. Note that all
structural details across length scales larger than the mono-
mer radiusa is contained solely inSsqd. In the results to
follow, we focus on using reciprocal space analysis to study
cluster structure. This is motivated by two important obser-
vations.(i) the ability to directly compare with light scatter-
ing experiments, and(ii ) previous work noting that recipro-
cal space analysis yields structural details that tend to be
washed out in real space analysis[16]. However, to be con-
sistent and show that our results are not a product of the
method of analysis, we also provide a brief analysis in real
space. This analysis method is outlined below.

In results to follow, we focus our attention on the structure
of the largest cluster. Reciprocal space analysis for determin-
ing the fractal dimension is extremely robust with respect to
fluctuations from one simulation run to the next. We explic-
itly checked this by looking at each individually calculated
Ssqd. Run to run variation inSsqd is negligible except at
length scales on the order of the cluster size. Thus one ex-
pects that there will be a large statistical variation in calcu-
lating the mean cluster size in this way, but we do not use
Ssqd in this manner. Rather we extract a fractal dimension
from the slope of the log-log plot ofSsqd vs q, where fluc-
tuations are small. This will be discussed further in Sec. IV.

B. Real space analysis

Overall cluster size can be defined by the radius of gyra-
tion

Rg
2 =

E r2rsrWddrW

E rsrWddrW

, s8d

wherer is the radial distance measured from the cluster cen-
ter of mass andrsrWd is the position dependent mass density.
rsrd for a fractal aggregate is well represented at smallr by
a power law in Ref.[17], i.e., rsrWd=ror

Df−d, whered is the
space dimension. Cluster mass then scales with geometric
size asM ~Rg

Df. By plotting logsMd vs logsRgd, linear re-
gression yields a slope equal toDf. For an ensemble of clus-
ters, the value ofDf thus obtained represents an effective
fractal dimension over the ensemble, and is not sensitive to
the structural details of a single aggregate. Although this
method of analysis is appropriate for studying self-similar
structure over length scales from the monomer size to the
radius of gyration, we have instead chosen to focus on the
largest cluster in the system at timet and look for mass
scaling by the method of nested spheres[16,18]. For com-
parison we will also show the effective fractal dimension of
the ensemble.

Real space nested spheres analysis of a single cluster is
done in the following manner. First, a monomerj is chosen
at random from theN monomers in a selected cluster. If it
falls within a distanced;urW j −rWcmuøeRg, where eø1 and
rWcm is the cluster center of mass vector, it becomes the refer-
ence center from which all subsequent monomer distances
will be measured. Next, we determine the number of mono-
mersm contained within concentric spheres of radiusr by
summing over alli monomers in the cluster subject to the
constrainturWi −rW juø r. r is then incremented by a chosen step
sizeDr ùdm and the counting process repeated untilm=N. A
new monomerj is then picked again at random from the pool
(excluding the previously picked monomers) and the above
procedure repeated. Depending on the value ofN, we aver-
age the entiresr ,md data set over 10 to 100j values. In this
way, the average local structure is probed. Plotting logsmd vs
logsrd yields a slope equal toDf. Typically, we have chosen
e=0.25 to ensure that cluster edge effects do not contribute
to the local structure.
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IV. RESULTS AND DISCUSSION

A. Largest cluster structure

1. DLCA Model

In Fig. 1 we show the evolution of the DLCA structure by
computingIsqd [Eq. (3)] for the largest cluster with mono-
mer volume fractionfv=0.01. For very largeq, probing the
smallest length scale in the system, i.e, the monomer radius
a, one observes “interference ripples” and Porod’s law
fIsqd,q−4g. For intermediate values ofq, Isqd shows a
power-law behavior,q−Df, revealing the well-known dilute-
limit DLCA fractal dimensionDf .1.8. For small values of
q, the power law gives way to aq independent Rayleigh
regimeat earlier times, whereIsqd=N the number of mono-
mers per cluster. The transition between the two regimes is
the so-called Guinier regime[19], and determines the cluster
size. However, as the system continues to aggregate, forming
larger and larger clusters and thus increasing the cluster vol-
ume fractionfv

c, the power-law regime develops yet another
slope of<2.6 at smallq, indicating a different fractal dimen-
sion at larger length scales. Thus, late in the aggregation
process, the largest cluster in the system has a hybrid, inho-
mogeneous morphology characterized by a short-rangelocal
structure ofDf .1.8 and a long-rangeoverall structure de-
scribed byDf .2.6. It is an aggregate composed of aggre-
gates of a different fractal dimension, which we call a “su-

peraggregate.”Moreover, the inflection point in the structure
factor suggests another characteristic length scale which
separates these two regimes.

A physical basis to this new length scale can be provided
in the following way. Since the fractal dimension of the
DLCA aggregates at early times is less than the spatial di-
mension, when the aggregation proceeds to a certaincritical
size, the aggregates will fill the volume by barely touching
each other and the system will gel. To calculate this critical
size we assume the system to be made of equal sized spheri-
cal clusters. We take the monomer volume fraction of an
individual clusterfv,i to be

fv,i =
Na3

s4p/3dRp
3 , s9d

where N is the number of monomers per cluster and the
cluster perimeter radius is given by Eq.(2). We also use the
fundamental relation

N = k0SRg

a
DDf

. s10d

Past work has shown thatk0.1.3 for the DLCA aggregation
class[20]. Our present findings yield a similar value as well
and k0.1.4,1.2 for BLCA and RLCA, respectively. The
condition that the clusters have grown to fill the entire sys-
tem volume means that the monomer volume fraction of an
individual clusterfv,i is equal to the fixed monomer volume
fraction of the entire systemfv, fv,i = fv. Using Eqs.(2), (9),
and (10), we solve to findRg when this happens:

Rg,G = aFk0
−1SDf + 2

Df
Dd/2

fvG−1/sd−Dfd

. s11d

We call this theideal gel point radius of gyration.
We show in Fig. 1 the location ofRg,G

−1 calculated from Eq.
(11). This coincides with the inflection point inIsqd provid-
ing a strong support to the physical picture described above.
Of course, in real situations, the substructures that build the
gel structure are neither spherical nor monodisperse.

Equation (11) shows a strong dependence ofRg,G on
monomer volume fractionsfv. To test this functional depen-
dence, we investigate the structure of the largest DLCA clus-
ter as a function of time for another monomer volume frac-
tion fv=0.1. Results are shown in Fig. 2. A similar crossover
from Df .1.8 toDf .2.6 is seen again at a crossover length
scale which matches extremely well with a smaller value of
Rg,G corresponding to this higher volume fraction.

We would like to point out that results forfv
=0.0005,0.001,0.005 showed either no gel point over our
simulation time or a gel point at such late times that the
apparent crossover length was near the box sizeL. If L
.Rg,G, clusters cannot grow large enough for the second
large length scale structure to develop. Reaching the gel
point for fv=0.0005 requiredNmù107, inaccessible by cur-
rent computational methods. Thus we have only shown re-
sults for fv=0.01,0.1, but note thatfv=0.01 is at least an
order of magnitude less than monomer volume fractions
studied in past simulations.

FIG. 1. Structure of the largest cluster is studied by computing
Isqd according to Eq.(3) at different times during aggregation for
the three-dimensional DLCA simulation with a monomer volume
fraction fv=0.01. Here,Nc is the number of clusters at a given time
during aggregation. Thus, smallerNc corresponds to a later time.
The location of the calculated ideal gel point radius of gyration[Eq.
(11)] is shown asRg,G

−1 . For very large largeq, probing the smallest
length scale in the system, i.e., the monomer radiusa, one observes
“interference ripples” and Porod’s lawfIsqd,q−4g in this log-log
plot. For intermediate values ofq, Isqd characteristic of a DLCA
aggregate is seen with a fractal dimension ofDf .1.8 obtained from
the slope of the graph. Near the gel point,Isqd evolves to show two
power-law regimes. The first regime mentioned above remains in-
tact, but at smallerq, hence at a larger length scale, aDf .2.6
regime appears. For smaller values ofq, the power law gives way to
a q-independent Rayleigh regime. Solid lines have been drawn at
the designated slopes,q−Dfd and serve only to guide the eye.
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2. BLCA and RLCA Models

It is known that clusters produced under reaction-limited
conditions are more polydisperse in size than their diffusion-
limited counterparts[21]. Likewise, predictions for the
ballistic-limited scenario yield a polydispersity greater than
DLCA but substantially less than what is found for RLCA.
Since an inherent assumption made in our definition ofRg,G
is that of a monodisperse cluster size distribution, it is rea-
sonable to question its validity as a descriptor of the cross-
over length in systems where the cluster size distribution is
very polydisperse. Moreover, since the large length scale
structure near the gel point of DLCA model is characterized
by a different fractal dimensionDf .2.6, it is natural to ask
whether a similar gel point fractal dimension would be
present in clusters formed by other kinetic models such as
BLCA and RLCA. For these reasons, we have also per-
formed large-scale simulations for the BLCA and RLCA
models in three dimensions. The corresponding structure of
the largest cluster for monomer volume fractionfv=0.01 is
shown in Figs. 3 and 4.

Similar to the DLCA case, one observes “interference
ripples” and Porod’s lawfIsqd,q−4g for very largeq probing
the monomer size. For intermediate values ofq, Isqd shows a
power-law behavior,q−Df, revealing the well-known dilute-
limit BLCA sDf .1.9d and RLCA structuresDf .2.1d in
Figs. 3 and 4, respectively. As before, for small values ofq,
the power law gives way to aq-independent Rayleigh regime
at earlier times. However, the second power-law regime,
seen at late times in Fig. 1 and characterized by a slope of
<2.6 is less pronounced in BLCA and RLCA. The inflection
point in Isqd at Rg,G

−1 is also quite weak. Because RLCA clus-
ters are less ramified than DLCA clusters, they have to grow
to a largerRg,G sN,Rg

Dfd in order to form a superaggregate.
Due to the finite simulation size, RLCA does not reach this
point for fv=0.01 until near the end of the simulation. To
remedy this we need to go to higherfv and thus to a lower

value ofRg,G, or more importantly for a finite system, lower
value ofRg,G/L.

Such simulations for BLCA and RLCA withfv=0.1 are
carried out, and the results are shown in Figs. 5 and 6, re-
spectively, for the largest cluster as a function of time. As

FIG. 2. Same as in Fig. 1 except for a monomer volume fraction
fv=0.1. A crossover fromDf .1.8 to Df .2.6 is seen again at a
crossover length scale which matches extremely well with a smaller
value of Rg,G corresponding to this higher volume fraction. Solid
lines have been drawn at the designated slopes,q−Dfd and serve
only to guide the eye.

FIG. 3. Same as in Fig. 1 except for the three-dimensional
BLCA model. Both a Porod regime and aq-independent Rayleigh
regime are present as seen in the DLCA results(Fig. 1). For inter-
mediate values ofq, Isqd shows a power-law behaviormq−Df, re-
vealing the well-known dilute-limit BLCA fractal dimensionDf

.1.9. However, the second power-law regime, characterized by
another slope of<2.6 (seen in Fig. 1 at late times) and starting at an
inflection point given byRg,G

−1 is less pronounced in this figure.
Solid lines have been drawn at the designated slopes,q−Dfd and
serve only to guide the eye.

FIG. 4. Same as in Fig. 1 except for the three-dimensional
RLCA model. Both a Porod regime and aq-independent Rayleigh
regime are present as seen in the DLCA results(Fig. 1). For inter-
mediate values ofq, Isqd shows a power-law behaviormq−Df, re-
vealing the well-known dilute-limit RLCA fractal dimensionDf

.2.1. However, the second power-law regime, characterized by
another slope of<2.6 (seen in Fig. 1 at late times) and starting at an
inflection point given byRg,G

−1 is less pronounced in this figure.
Solid lines have been drawn at the designated slopes,q−Dfd and
serve only to guide the eye.
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can be clearly seen in these figures, BLCA and RLCA simu-
lations show, at smaller length scales(largeq), a fractal di-
mension of 1.9 or 2.1, respectively. More importantly, a
model independent large-scale(smallq) fractal dimension of
2.6 develops at late times, consistent with the DLCA model.
This implies, within the scatter of our data[22], that the
aggregate of aggregates, or superaggregate, has alarge scale
structure independent of the prescribed kinetic model. The
hybrid nature of the superaggregate is also clear: a different
fractal dimension, characterized by the underlying aggrega-
tion kinetics, is also observed but only over length scales
smaller than the ideal gel point radius of gyration.

In Fig. 7 we show the measured crossover length from the
simulations, which we denote assqcd−1, as a function of the

dilute-limit fractal dimension(top) and sticking probability
Pstick (bottom). Rg,G [Eq. (11)] is a function of bothDf and
fv. Thus we plot(shown as solid lines) Rg,G as a function of
Df at fixed fv for fv=0.01, 0.1. Data points atDf .1.8, 1.9,
2.1 correspond to the DLCA, BLCA, and RLCA simulation
results, respectively. The two intermediate points between
BLCA and RLCA correspond to RLCA simulations with
Pstick=0.1,0.01. We first note(see bottom of Fig. 7) that
sqcd−1 is not a strong function ofPstick. qc

−1 increases only by
a factor of,2 from the limiting DLCA value atPstick=1 to
Pstick=0.001. Second, the agreement betweensqcd−1 and the
predictedRg,G is quite good considering the assumption of
spherical clusters and a monodisperse cluster size distribu-
tion used in derivingRg,G. The measuredsqcd−1 follow the
same trend as the predicted curve, but all data fall systemati-
cally aboveRg,G. The slight disagreement between the two

FIG. 5. Same as in Fig. 3 except for a monomer volume fraction
fv=0.1. Development of the second power-law regime at late times,
characterized by another slope of<2.6 and starting around an in-
flection point given byRg,G

−1 is clear for this BLCA simulation. Solid
lines have been drawn at the designated slopes,q−Dfd and serve
only to guide the eye.

FIG. 6. Same as in Fig. 4 except for a monomer volume fraction
fv=0.1. Development of the second power-law regime at late times,
characterized by another slope of<2.6 and starting around an in-
flection point given byRg,G

−1 is clear for this RLCA simulation. Solid
lines have been drawn at the designated slopes,q−Dfd and serve
only to guide the eye.

FIG. 7. Measured crossover length scalesqcd−1 as a function of
mass fractal dimensionDf and sticking probabilityPstick. Df has
been determined from a linear least squares fit oflnsNd vs lnsRg/ad
in the dilute limit (early time). Error in sqcd−1 was estimated by
looking at variations in slope from a least squares fit of the two
power-law regimes near the crossover length inq space. According
to our predictions[Eq. (11)], sqcd−1=Rg,G. A comparison between
the measuredsqcd−1 andRg,G is shown in the top figure. The bottom
figure is a measure of how much the cross over length scale shifts to
larger values as a function of the sticking probability. Note that
Pstick=1 corresponds to the diffusion-limited aggregation class.
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becomes worse with increasingDf. As mentioned above,
RLCA is more polydisperse in cluster size than both DLCA
and BLCA with DLCA being the least polydisperse. It thus
appears that increasing polydispersity pushes the crossover
length to aslightly higher valuethan that predicted fromRg,G
which is defined assuming a monodisperse distribution.

B. Comparison with backbone percolation clusters

What is the significance of the slope of magnitude 2.6 at
large length scales in the OLMC results? This indicates a
mass fractal dimension ofDf .2.6, very close to the ac-
cepted mass fractal dimensionDf for a percolating backbone
in three-dimensions , and in agreement with other simulation
results of the sol-gel transition[4]. Before comparing our
results with percolation though, a few comments are in order.
One intuitively expects that the aggregation and percolation
models have drastically different properties, in part because
the former isdynamicand the latterstatic, but more so be-
cause percolation represents a state of criticality and aggre-
gation models do not. Indeed different properties are found
when comparing cluster size distributions and corresponding
scaling laws(for instance, see Ref.[18] for percolation scal-
ing laws and Fig. 17 of Ref.[3] for a comparison of scaling
in percolation and DLCA; for a full discussion of dilute-limit
cluster size distribution scaling laws see Ref.[14]). However,
for aggregating models, a critical behavior develops at the
sol-gel transition and this transition has a lengthy history of
being compared to percolation, via the mass fractal dimen-
sion [3,5,23–26]. Percolation clusters can be characterized
by a range of fractal dimensions, describing both mass and
surface structure. We choose however, to address the
“percolation-like” behavior of the spanning cluster in the
OLMC only through the mass fractal dimension. Although
this is not a complete analysis in the strict sense, it is the
mass fractal dimension which yields structural details
through light scattering measurements.

Since the large-scale mass fractal dimension of the largest
cluster near the gel point is almost identical to the mass
fractal dimension of a percolating backbone, we propose a
picture of sol-gel transition in irreversibly aggregating sys-
tems. A dilute sol aggregates via DLCA, RLCA, or BLCA
kinetics yielding aggregates with fractal dimensions of 1.8 or
2.1, or 1.9, respectively. Because these aggregate fractal di-
mensions are less than the spatial dimension, the effective
aggregate volume fraction(the occupied volume of the ag-
gregates normalized by the system volume) approaches unity
as the aggregation proceeds. At the ideal gel point, the ag-
gregates are so crowded that they percolate to form a super-
aggregate made up of fractal aggregates with an average size
of Rg,G.

Instead of the traditional percolation scenario of statically
placing particles on lattice(site percolation) or off lattice
(continuum percolation), at increasingly larger monomer vol-
ume fractions until a spanning cluster is formed, aggregating
systems forming fractal-like clusters eventually percolate
due to an increasing cluster volume fractionfv

c as the system
evolves. This implies that the largest cluster is formed by the
percolation of smaller clusters, each with a dilute-limit frac-

tal morphology. Further support for this picture comes from
noting that the large length scale fractal dimension,Df
.2.6, is practically independent(within the scatter of our
data) of the kinetic model used to produce such a cluster. It is
only at small length scales, below the critical radius of gyra-
tion, that the prescribed kinetic model dictates cluster struc-
ture.

To further analyze the similarity and difference between
kinetically grown clusters at the gel point and static percola-
tion backbone, we have performed three-dimensional perco-
lation simulations. We limit ourselves to site percolation
since all percolation models yield mass fractal dimension
Df .2.55 [18]. Sites on a simple cubic lattice of side length
L=256 and lattice spacing,=dm=1, were populated with
probability p=pc.0.31 [18], wheredm is the monomer di-
ameter andpc the percolation threshold. The backbone clus-
ter was then isolated andIsqd calculated according to Eq.(3).

Results, averaged over 10 statistically independent trials,
are shown in Fig. 8. Theq axis is scaled byRg,G; qRg,G=1
corresponds to scattering which probes length scales on the
order of Rg,G. For the percolation simulationRg,G=a the
monomer radius. We find thatIsqd has a power-law regime
with exponentDf .2.5, verifying the archetypical percola-
tion backbone mass fractal structure. AtqRg,G=1, Isqd
crosses over to the well-known spherical particle form factor.
This crossover at the monomer length scale is expected and
is also seen in the OLMC results(Figs. 1–6). This is, how-
ever, not the crossover of interest. We also show in Fig. 8
Isqd of the gel point largest cluster for DLCA atfv=0.01. At
low q results show a power-law behavior withDf .2.5, as
similarly found for the percolation backbone and also shown
in Fig. 1. We must stress here that although this structure has
been previously seen in simulation, it was never discussed as
to over which length scale it occurs, nor how it develops.
The q axis is again scaled byRg,G, but we now use the
predicted ideal gel point radius of gyration for DLCA at this
monomer volume fraction, given by Eq.(11). At qRg,G=1,
Isqd shows an inflection to yet another power-law regime
with smaller slope ca..1.8, the dilute-limit mass fractal di-
mension for DLCA clusters. This clearly supports our pro-
posed picture of how, structurally, the sol-gel transition pro-
ceeds. Individual dilute-limit clusters act as “monomers” in
the percolation scenario. Instead of the monomeric structure
being dictated by the spherical form factor, each effective
site now has a structure dictated by the prescribed kinetic
model when dilute. In irreversibly aggregating systems the
early time structure becomes frozen within the percolated
network. This hybrid or “biphase” structure in mass fractal
dimension sets the largest cluster apart from the archetypical
percolation backbone. Since our analysis is given in terms of
the mass fractal dimension, it is amenable to experimental
verification from light scattering data.

Further comparison with percolation can be made by
probing the cluster-ensemble averaged structure. Static per-
colation systems at the percolation threshold are known to
consist of a backbone withDf .2.55 and smaller clusters,
known as lattice animals, withDf .1.9. We can probe the
difference in the ensemble averagedDf between the kinetic
OLMC and static percolation by plotting logsNd versus
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logsRgd for the ensemble of clusters. Results are shown
in Fig. 9. The solid lines are from a linear least squares fit
yielding a slope ofDf. These two values are quite different,
and imply different distributions ofDf amongst the ensemble
in these two systems. Although there are similarities between
the largest cluster and the backbone of static percolation, the
ensemble of clusters in the OLMC at the gel point and static
percolation is structurally different.

C. Comparison with experiment

It is well established that soot in diffusion flames aggre-
gates under DLCA conditions[27]. The advantage to study-
ing aggregation in a sooty flame is that the aggregation time
is coupled to the height above the flame burner allowing
different aggregation times to be easily probed. We have per-

formed measurements of aggregate structure in an acetylene
sC2H2d /air diffusion flame, using static light scattering[28].
The scattered light intensityIsqd was measured as a function
of height above the burner. Results are shown asSsqd in Fig.
10.

At early time, and low heights in the flame, we find typi-
cal DLCA soot clusters withDf .1.8. The power-law regime
gives way atq−1.Rg to a q independent Rayleigh regime.
However, with increasing height above the burner, an in-
creased intensity at lowq develops, marked by a second
power-law regime with slopeDf .2.6. Is this second struc-
ture then due to crowding and subsequent percolation of
clusters within the flame?

Over the range of heights measured, the flame narrows. At
low height the measuredfv with Df =1.8 yields anRg,G well
out of range of the observedsqcd−1. However, at larger
heights, assuming mass conservation, the narrowing of the

FIG. 8. (Top) Three-dimensional site percolation backbone
structure atp=pc. The top graph shows the real space analysis using
the method of concentric circles. The solid line is a result of per-
forming a least squares fit over the range 0.01ø r /Lø0.4. (Bot-
tom)The bottom graph shows theq-space structure represented by
Ssqd and calculated according to Eq.(5). To directly compare with
the DLCA largest cluster results, we have scaled the horizontal axis
by Rg,G such thatqRg,G=1. For site percolationRg,G=a. With
DLCA, we have usedRg,G calculated according to Eq.(11), with
Df =1.8 andfv=0.01. Solid lines have been drawn at the designated
slopes,q−Dfd and serve only to guide the eye.

FIG. 9. Comparison of mass scaling for the ensemble of clusters
between three-dimensional DLCA at the gel point and three-
dimensional site percolation at the percolation threshold. Solid lines
are from performing a linear least squares fit.

FIG. 10. Scattered light intensity from a C2H2/air flame at dif-
ferent height above the burner. Results from Sorensenet al. [28].
Solid lines are have been drawn at the designated slopes,q−Dfd and
serve only to guide the eye.
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flame results in a largerfv. This yields a value ofRg,G in
reasonable agreement withsqc

−1d, implying that what we ob-
serve in simulation is happening in the sooting flame. We
note however, that shear forces, possibly present in the
flame, could cause the clusters to restructure and thus raise
Df. Although the experimental and simulation results appear
to have good agreement, this needs to be ruled out before a
definitive conclusion can be made.

Studies of gel structure are vast and numerous. For in-
stance, structure of latex, polystyrene, and particulate silica
and gold dispersions have been intensely investigated, via
static light scattering, near the gel point within the past 25
years[29–36]. Interestingly, none has shown a crossover to
percolation, and many conclude that the gel structure is well
described by either the DLCA or RLCA models. We have
used the values offv from these past studies to calculateRg,G
and compareRg,G

−1 with the smallq range of the measured
light scattering data. Of these, most light scattering spectra
were cut off either prior to reachingq=Rg,G

−1 , or within a
factor of 2 beyondRg,G

−1 . Several studies extended theq range
approximately one order of magnitude beyondRg,G

−1 but the
systems appeared to be either in the RLCA regime or were at
such a high monomer volume fraction that the monomers
themselves percolated. Our results imply that cluster growth
a few orders of magnitude beyondRg,G may be necessary in
RLCA systems in order to see the crossover.

Fragmentation may also be present in real systems. Be-
cause fragmentation does not occur over any specific length
scale where the monomer coordination number is low, re-
peatedly breaking the clusters may wash out the crossover
length. Moreover, colloidal particles typically interact with
finite magnitude over length scales of one to several particle
diameters, where DLCA assumes infinite attraction at con-
tact. Past work has shown that depending on the magnitude
and range of the interaction potential the percolation thresh-
old increases or decreases[37,38].

Several studies have reported on an increase in mass frac-
tal dimension in gelled suspensions, but attribute the change
to either restructuring due to aging, or direct inclusion of
restructuring at the monomer level within the simulation de-
tails [39–41]. Moreover, restructuring results in an increased
mass fractal dimension over the entire cluster length scale,
i.e., there is no crossover length beyond the monomer size.
Our algorithm does not incorporate aging or restructuring,
and thus the new structure and location inq space can only

result from the prescribed kinetic model by which the system
evolves.

V. CONCLUSIONS

We have simulated cluster-cluster aggregation for the
diffusion-limited (DLCA), ballistic-limited (BLCA), and
reaction-limited(RLCA) aggregation classes, and covering
three orders of magnitude of monomer volume fractionfv. At
early time, when dilute as measured by the cluster volume
fraction fv

c, we find archetypical solid particle clusters of
Df .1.8,1.9,2.1 for DLCA, BLCA, and RLCA, respec-
tively. As the system evolves and becomes densesfv

c→1d,
the largest cluster in the systems develops a two-phasehy-
brid morphology characterized by a fractal dimension ca. 2.6
over large length scales, independent(within the scatter of
our data) of aggregation class, and a smaller fractal dimen-
sion at small length scales. We find that the small length
scale morphology of the largest cluster is equivalent to the
dilute-limit small cluster morphology, which is dependent on
aggregation class. This suggests that the largest cluster is an
aggregate of smaller aggregates. We call this large cluster a
“superaggregate.”

Our simulation results provide a picture of how the sol-
gel transition proceeds structurally. A dilute sol aggregates
via DLCA, RLCA, or BLCA kinetics yielding aggregates
with fractal dimensions of 1.8, 2.1, or 1.9, respectively. At
the ideal gel point, the aggregates are so crowded that they
percolate to form a superaggregate made up of fractal aggre-
gates with an average size ofRg,G. This scenario of how the
spanning cluster forms in simulations of aggregating sols is
new to our work. The simulated DLCA length scale marking
the crossover between the two morphologies, termed the
critical radius of gyration, is in good agreement with a cal-
culation based on a monodisperse cluster size distribution.
BLCA and RLCA simulation results, where polydispersity in
cluster size is larger than DLCA, show a crossover length
scale systematically larger than the monodisperse prediction.
We find qualitative agreement between our simulation results
and experimental results of aggregating soot clusters.
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