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Structural crossover in dense irreversibly aggregating particulate systems
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Cluster-cluster aggregation has been simulated by off-lattice Monte Carlo methods for diffusion-limited
(DLCA), ballistic-limited, and reaction-limited cluster aggregation classes. We find that as the system evolves
and becomes dense, the largest cluster develops a hybrid structure with mass fractal dibgrgdhover
large length scales, while at smaller length scales, the early time dilute-limit fractal structure is frozen in. The
largest cluster is thus an aggregate of smaller aggregates with a different fractal dimension, and we call it a
“superaggregate.” The crossover length separating the two morphologies, which we call the critical radius of
gyration, can be calculated based on a simple theory that assumes a monodisperse cluster size distribution. This
agrees well with simulation results for DLCA. However, for other classes we find that the increasing polydis-
persity in cluster size pushes the simulated crossover length radius of gyration to values systematically larger
than the predicted value.
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[. INTRODUCTION gel state characterized by a fractal dimension of 2.6? Past
N . . work was not able to provide a precise answer to this ques-
The sol-gel transition has been extensively studied byion for the following reason. To study this crossover, one
both chemists and physicists. Aggregation in a dilute sol hageeds to start from a dilute state and follow the evolution of
been well understood since the early part of the last centuryhe system for a long time until it becomes crowded and
while percolation theory has been widely used throughoutiltimately gels. In contrast, much of the past simulation work
the past three decades to describe both the transition to ks been limited to eithgii) small monomer volume frac-
dense state and the gel itself. For instance, shear viscositions f, carried out for a limited time, so that cluster crowd-
and elastic moduli, relaxation times, and both long and shoring is yet to substantially modify the cluster morphology or
time diffusion coefficients of colloidal and polymeric sys- (i) to high monomer volume fractiorif8-5, where the sys-
tems show behavior near the sol-gel transition point reministem begins evolving already in a crowded state and any sig-
cent of critical phenomena usually associated with percolapature of a crossover from dilute to dense is lost. One study
tion [1]. However, the details of the evolution from dilute to in two dimensionsdoes address a structural crossover in
crowded, is largely unknown. As a first step toward under-PLCA clusters[S]. The results, analyzed in real space, show
standing this evolution, we have recently carried out large® Crossover from the_predlcted two—dlme.nsmnal dilute-limit
scale off-lattice Monte Carl@OLMC) simuiations[2] of the =~ Mass fractal dimension to 2d percolation. However, the

inati ; ; fos : monomer volume fractions studied were quite | in
kinetics of diffusion-limited cluster aggregationDLCA) from 10% to 70% and the gel-limit structqural dﬁgwgere

over the entire range of evolution of the system—from dilute - : .
everely limited due to small system sizes. More importantly,

to crowded. The goal of the present paper is to provide , " .
coherent description of thmorphological changethat takes i?osircl))\llsel?ilhgzﬂaenx?;? n was provided as to why such a

place as the system evolves from the dilute to the crowde We address this question structural crossoveby bridg-

state. ing the gap between dilute and dense regimes in irreversibly

It is well known _that in the dilute limit, DLCA process aggregating sols through large sciieee-dimensionaimu-
leads to the formation of fractal clusters characterized by EN

. X ) ’ fation of several relevant models. Besides the previously
fractal d|men3|oan:1'.8. If such an aggregation process is . antioned DLCA model, we also consider both reaction-
o a0 S teoupe e p v S g lstr aggregatonRCA) model and balsic

" ‘ imited cluster aggregatio(BLCA) model. By starting from
larities between the structure of DLCA clusters near the ge ggregatio® ) y g

) d lati | E lo. DLCA cl dilute state and allowing the system to evolve until it gels,
point and percolation clusters. For example, clustergy o clearly demonstrate that the largest cluster develops a
at the gel point are shown to have the sdarge-scalemass

. ; . hybrid structure with mass fractal dimensi@y=2.6 over
fractal dimensiorD;=2.6 as spanningbackbong percola- |36 jength scales, while at smaller length scales the early
tion clusters[3-5. A question then naturally arises: how

d he DLCA cl f he dil time dilute-limit fractal structure, characterized by the par-
oes the cluster structure cross over from the dilut&;e|ar kinetic model used in the simulation, is frozen in. The

limit characterized by a fractal dimension of 1.8 to the densefargest cluster is thus an aggregate of smaller aggregates with
a different fractal dimension, and we call it a “superaggre-
gate.” We then show that this crossover in mass fractal di-
*Present Address: Polymers Division, National Institute of Stan-mension occurs at a critical cluster size, which we call the
dards and Technology, Gaithersburg, MD 20899. Email:critical radius of gyration. Such a criticality in size has been
dan.fry@nist.gov suggested in previous studigs-7], vaguely implying a pos-
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sible crossover in structure, but no detailed analysis was Using the above listed modeling scheme, we have per-
given. We, however, explicitly quantify the crossover in formed large scale off-lattice Monte Carlo cluster-cluster ag-
structure, in terms of a crossover length scale mentionedregation simulations for diffusion-limited, ballistic-limited,
above, and provide a physically motivated model of how thisand reaction-limited aggregation classes in three dimensions.
length scale depends on monomer volume fraction and mad&fe begin by randomly placing off-lattidg,, monomers in a
fractal dimension. In addition, a striking similarity between cubic box of side lengtt. at monomer volume fractions,
our DLCA simulation results for the structure factor and =0.0005,0.001,0.005,0.01, and 0.1. At titwed the number
static light scattering results in soot clusters is found, bottof clusters isN.(0)=N,, of sizeN=1 monomer per cluster.
showingDs=2.6 over large length scales abg=1.8 over  The simulation then proceeds by first randomly picking, with
smaller length scales. probability N;*, a cluster of sizeN. This cluster is moved,
The rest of the paper is organized as follows. We firstwith probability N"*Pf, one monomer diameter in either a
outline our simulation method. A discussion on how we de-randomly chosen direction for the DLCA and RLCA classes,
termine cluster structure in reciprocal and real space and owr along a straight line, randomly oriented trajectory for
motivations for focusing on reciprocal space analysis fol-BLCA, whereDy is the well-known dilute-limit mass fractal
lows. As past simulation work on the sol-gel transition hasdimension of a cluster in each respective aggregation class
dealt with diffusion-limited cluster aggregation, we first ad- [9-12]. Each time a cluster is picked, the time, measured in
dress the evolution of cluster structure for this type of aggreMonte Carlo steps per cluster, is incremented\Q§7 regard-
gation and develop a simplified model, giving physicalless of whether the cluster has moved. If two clusters collide
meaning to the newly found structural crossover length scalehe motion is adjusted in order to correct for any overlap
To further test the validity of our model and understand thisbetween particles and the two stick together with probability
crossover for a broad class of aggregation schemes we fobPg;,.
low with simulation results for ballistic-limited and reaction-  The functionality with time of the ratio of the nearest-
limited cluster aggregation, comparing the simulated crossneighbor separatioR,, to radius of gyrationRy is R,/R,
over length to our theoretical predictions as a function ofect=24-D/dDs " \where the kinetic exponemt>0 [2]. z is re-
mass fractal dimension and polydispersity in cluster sizelated to the aggregation kernel homogeneifyi.e., z=1/(1
The “percolationlike” large length scale structure is studied-)) [13]. SinceD;<d the space dimension, this ratio de-
next and contrasted against the spanning backbone clustgfeases with timd2,14). Consequently, the aggregates be-
from our kinetic models. Subsequently, we compare our recome increasingly crowded as the system evolves. This is
sults with several experimental studies in colloids and aerotrye for all three aggregation classes. The degree of cluster
sols and conclude with a brief discussion of possibly Whycrowding is measured by calculation of tokister volume
this structural crossover has not been seen to date in aggr@action f© available in the system at tinte where

gating colloids.
4 ( Dy + 2)3’2N°(°

— > R (1)
3L\ Dy o

Il. SIMULATION METHOD flc)(t) =

In the absence of external forces aggregation of particu-
late dispersions is governed almost entirely by the relativerhis form for f uses a reasonable definition of the cluster
strengths of attractive and repulsive interactions between thgerimeter radiug, [15], where
dispersed particlef@]. If the repulsion is entirely suppressed,
and the attractive potential negligible except at particle con- R = ( Di+ 2) 2 )
tact, the aggregation rate is limited only by the particle dy- P Ds '
namics, which in general is diffusivgandom walk or bal-
listic (linear trajectory, important in rarified gagedJpon  Throughout the results to follow, “dilute” and “dense,” or
colliding, clusters “stick” together with unit probability “early” and “late” time corresponds tj(t)<1 and f;(t)
Pqick- If there is some degree of repulsion, not all collisions=1, respectively. The cluster number, size distribution along
result in clusters getting close enough to stick together anwith its moments, cluster volume fraction, and radius of gy-
Pgick< 1. Typically, the repulsive barrigg, between colloi- ration are monitored throughout the simulation. The actual
dal particles is<50—100 MeV[8]. The probability then, at gel point is determined by looking for the first system-
room temperature, that two particles stick togethePdg,, ~ Spanning cluster.
=exp(—E,/kgT)=1073. With these in mind many physical To investigate cluster structure as the system evolves from
systems can be separated into essentially three aggregatiéiiute to dense and ultimately gels, it is important that the
classes: DLCA, BLCA, and RLCA. We model these threeclusters are allowed to grow to a size where crowding be-

aggregation classes with the following criteria: comes substantidf; = 1), and yet there are enough clusters
(1) DLCA: diffusive cluster motionPg;q=1. left in the system to form a reasonable statistical average.
(2) BLCA: ballistic (linear trajectory cluster motion, Settingf;=1 in Eq. (1), assuming a monodisperse cluster

Pstick=1. size distribution, fractal cIuster(sN~Rg’f), and the number
(3) RLCA: diffusive cluster motionPgjie < 1073 of clusters at the gel poiid, g~ 100, we estimate the num-

In all models presented we assume that the attractive pdser of monomers needed to see a transition to the dense state.
tential is infinite at particle contact, i.e., clusters stick to-All OLMC simulations presented here have been done at
gether irreversibly upon colliding. very large system sizes ranging fromk80 to 3x 10° to
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monomers and box sizésfrom 162 to 580 monomer diam- In results to follow, we focus our attention on the structure
etersd,,=2a, whered,=1. All results are an average over 5 of the largest cluster. Reciprocal space analysis for determin-
or more statistically independent trials. ing the fractal dimension is extremely robust with respect to

fluctuations from one simulation run to the next. We explic-
itly checked this by looking at each individually calculated
S(g). Run to run variation inS(q) is negligible except at

A. Reciprocal space analysis length scales on the order of the cluster size. Thus one ex-

Light scattering is one of the most frequently used tool ects that there will be a large statistical variation in calcu-

for investigating aggregate structure. The intensity of elasti—alting the mean cluster size in this way, but we do not use
gating aggreg o y o€ S(q) in this manner. Rather we extract a fractal dimension
cally scattered light for a system o discrete scattering

centers can be writien as, from the slope of the _Iog-!og pIo_t ds(q) vs q, where fluc-
tuations are small. This will be discussed further in Sec. IV.

Ill. DETERMINATION OF AGGREGATE STRUCTURE

(@=NF@S@, a=ld="sl?), @

2 B. Real space analysis
whereS(q) is the static structure factor Overall cluster size can be defined by the radius of gyra-
L8 tion
=—2 exdiq - (f—ryl, 4 7
s(@ N% Hiq - (7 = )] ) Jrzpmdr
Ry?= " (8)

(j:IZf—IZi is the scattering wave vector, or vector difference f . ;
between the scattered and incident wa#és the scattering p

angle, and\ the wavelength of light. Because each scatterin h is th dial di qf he cl
center is treated as a spherical particle of uniform densityVNe'er Is the radial distance measured from the cluster cen-

Eq. (4) reduces to ter of mass ang(r) is the position dependent mass density.
p(r) for a fractal aggregate is well represented at smaly
a power law in Ref[17], i.e., p(f)=p,rP 9, whered is the
space dimension. Cluster mass then scales with geometric
size asMocRng. By plotting logM) vs logRy), linear re-
gression yields a slope equaliy. For an ensemble of clus-

; (5 ters, the value oD; thus obtained represents an effective
fractal dimension over the ensemble, and is not sensitive to

and F(§) — F(q), the well-known form factor for a sphere, the structural details of a single aggregate. Although this

method of analysis is appropriate for studying self-similar
3 sinlga) —ga cos(qa)]2 structure over length scales from the monomer size to the
(qa)° '

radius of gyration, we have instead chosen to focus on the
) o largest cluster in the system at timeand look for mass
All systems that we model here are isotropic in both clusteiscaling by the method of nested sphef&§,1§. For com-
position and orientation. We thus perform a spherical averparison we will also show the effective fractal dimension of
age, i.e..S()— S(q), by selecting over 100 differem val-  the ensemble.
ues of constant magnitude. This is done by generating the Real space nested spheres analysis of a single cluster is
angles(#, ¢) according to a uniform differential solid angle done in the following manner. First, a mononjeis chosen
dQ. g is then calculated from, at random from thé\ monomers in a selected cluster. If it
- . R . A R falls within a distances=|r;—r,,| < eR,, wheree<1 and
G= ol SiN(O)COL $)&, + sin(B)sin(¢)e,+cod0)&s],  (7) FemiS the cluster center of| rjnass |vect|§)gr, it becomes the refer-
whereg, is thekth cartesian unit vector. The most important ence center from which all subsequent monomer distances
feature in calculation off(q) is g itself. It has units of inverse Wwill be measured. Next, we determine the number of mono-
length, and thus probes length scalesgof. Note that all mersm contained within concentric spheres of radiuby
structural details across length scales larger than the mongumming over ali monomers in the cluster subject to the
mer radiusa is contained solely ir§(qg). In the results to constraintf;—fj|<r. r is then incremented by a chosen step
follow, we focus on using reciprocal space analysis to studyizeAr =dy, and the counting process repeated umtiN. A
cluster structure. This is motivated by two important obserne€w monomey is then picked again at random from the pool
vations.(i) the ability to directly compare with light scatter- (excluding the previously picked monomgend the above
ing experiments, andi) previous work noting that recipro- Procedure repeated. Depending on the valu&lofve aver-
cal space analysis yields structural details that tend to bage the entirér,m) data set over 10 to 100values. In this
washed out in real space analygl$]. However, to be con- Wway, the average local structure is probed. Plottingriog/s
sistent and show that our results are not a product of th&og(r) yields a slope equal tDs. Typically, we have chosen
method of analysis, we also provide a brief analysis in reak=0.25 to ensure that cluster edge effects do not contribute
space. This analysis method is outlined below. to the local structure.

2

1
S@—N

N
2 exp(iq - )
I=1

2

N
1
=< |2 (cosd- o +i sind- 7))
=1

Flg) = { (6)
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10° o nows R peraggregate.Moreover, the inﬂectiqn .point in the structure
10t —o— N =653 1 factor suggests another_ characteristic length scale which
. :_—:s z:g 3 separates these two regimes '

, N e B A physical basis to this new length scale can be provided
o —— N, 220653 |1 in the following way. Since the fractal dimension of the
0F DRI DLCA aggregates at early times is less than the spatial di-

g w0y o - ] mension, when the aggregation proceeds to a cett#inal
0§ N o] size the aggregates will fill the volume by barely touching
10° | G each other and the system will gel. To calculate this critical
10° r 3dDLCA ; size we assume the system to be made of equal sized spheri-
I N «811853 h K
10* r L= 4o 1 pal_c_lusters. We take the monomer volume fraction of an
ek V=00t . T W L. & individual clusterf, ; to be

10° 10? 10" 10° 10' Na®

@ fu i~ ' (9)
' (4ml3)R

FIG. 1. Structure of the largest cluster is studied by computing
I(g) according to Eq(3) at different times during aggregation for where N is the number of monomers per cluster and the
the three-dimensional DLCA simulation with a monomer volume cluster perimeter radius is given by H&). We also use the
fraction f,=0.01. HereN, is the number of clusters at a given time fundamental relation
during aggregation. Thus, smalldk. corresponds to a later time.
The location of the calculated ideal gel point radius of gyrafieq. N = Bg D (10)
(12)] is shown aeR;’lG. For very large large, probing the smallest =k a )
length scale in the system, i.e., the monomer radjume observes
“interference ripples” and Porod’s laf¥(q) ~q™*] in this log-log  Past work has shown thkg=1.3 for the DLCA aggregation
plot. For intermediate values af, 1(q) characteristic of a DLCA  class[20]. Our present findings yield a similar value as well
aggregate is seen with a fractal dimensiome#= 1.8 obtained from  and ko=1.4,1.2 for BLCA and RLCA, respectively. The
the slope of the graph. Near the gel polrit)) evolves to show two  condition that the clusters have grown to fill the entire sys-
power-law regimes. The first regime mentioned above remains intem volume means that the monomer volume fraction of an
tact, but at smalleg, hence at a larger length scaleDa=2.6  individual clusterf,; is equal to the fixed monomer volume
regime appears. For smaller valuesjpthe power law gives way to  fraction of the entire systerfy, f,;=f,. Using Eqs(2), (9),

a g-independent Rayleigh regime. Solid lines have been drawn and (10), we solve to fin(Rg when this happens:
the designated slope-q°f) and serve only to guide the eye. ’

. Df+2 dr2 -1/(d-Dy)
IV. RESULTS AND DISCUSSION Ryc=al kg (T) f, : (11)
A. Largest cluster structure We call this theideal gel point radius of gyration.
1. DLCA Model We show in Fig. 1 the location @%_ t; calculated from Eq.

(11). This coincides with the inflection point irq) provid-

In Fig. 1 we show the evolution of the DLCA structure by ing a strong support to the physical picture described above.
computingl(q) [Eq. (3)] for the largest cluster with mono- Of course, in real situations, the substructures that build the
mer volume fractiorf,=0.01. For very large, probing the  gel structure are neither spherical nor monodisperse.
smallest length scale in the system, i.e, the monomer radius Equation (11) shows a strong dependence Bfc on
a, one observes “interference ripples” and Porod’s lawmonomer volume fractions,. To test this functional depen-
[I(@)~q™]. For intermediate values of, 1(q) shows a dence, we investigate the structure of the largest DLCA clus-
power-law behavior-q", revealing the well-known dilute- ter as a function of time for another monomer volume frac-
limit DLCA fractal dimensionD¢=1.8. For small values of tion f,=0.1. Results are shown in Fig. 2. A similar crossover
g, the power law gives way to g independent Rayleigh from D;=1.8 toD;=2.6 is seen again at a crossover length
regimeat earlier times wherel(q)=N the number of mono- scale which matches extremely well with a smaller value of
mers per cluster. The transition between the two regimes iR, s corresponding to this higher volume fraction.
the so-called Guinier regimd 9], and determines the cluster ~ We would like to point out that results forf,
size. However, as the system continues to aggregate, formirg0.0005,0.001,0.005 showed either no gel point over our
larger and larger clusters and thus increasing the cluster vosimulation time or a gel point at such late times that the
ume fractionf’, the power-law regime develops yet anotherapparent crossover length was near the box &izéf L
slope of~2.6 at small, indicating a different fractal dimen- =Ry, clusters cannot grow large enough for the second
sion at larger length scales. Thus, late in the aggregatiotarge length scale structure to develop. Reaching the gel
process, the largest cluster in the system has a hybrid, inhgoint for f,=0.0005 requiredN,,= 10’, inaccessible by cur-
mogeneous morphology characterized by a short-réoggd ~ rent computational methods. Thus we have only shown re-
structure ofD;=1.8 and a long-rangeverall structure de- sults for f,=0.01,0.1, but note that,=0.01 is at least an
scribed byD;=2.6. It is an aggregate composed of aggre-order of magnitude less than monomer volume fractions
gates of a different fractal dimension, which we call a “su-studied in past simulations.
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L=349
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FIG. 2. Same as in Fig. 1 except for a monomer volume fraction  F|G. 3. Same as in Fig. 1 except for the three-dimensional
f,=0.1. A crossover fronD;=1.8 to D;=2.6 is seen again at @ B|.CA model. Both a Porod regime andegindependent Rayleigh
crossover length scale which matches extremely well with a smallegre,gjime are present as seen in the DLCA resiitg. 1). For inter-
value of Ry s corresponding to this higher volume fraction. Solid mnediate values ofl, 1(q) shows a power-law behavieng®”, re-

/ , 5 . ) ' a| . g
lines have been drawn at the designated slopg™") and serve  yegling the well-known dilute-limit BLCA fractal dimensioB

only to guide the eye. =1.9. However, the second power-law regime, characterized by
another slope of=2.6 (seen in Fig. 1 at late timgand starting at an
2. BLCA and RLCA Models inflection point given byR(_;lG is less pronounced in this figure.

It is known that clusters produced under reaction-limitegSelid lines have been drawn at the designated slopg ™) and
conditions are more polydisperse in size than their diffusionS€"ve only to guide the eye.
limited counterparts[21]. Likewise, predictions for the
ballistic-limited scenario yield a polydispersity greater thanvalue ofRy g, or more importantly for a finite system, lower
DLCA but substantially less than what is found for RLCA. value ofRyg/L. _
Since an inherent assumption made in our definitioRgE Such simulations for BLCA and RLCA witli,=0.1 are
is that of a monodisperse cluster size distribution, it is reacarried out, and the results are shown in Figs. 5 and 6, re-
sonable to question its validity as a descriptor of the crossspectively, for the largest cluster as a function of time. As

over length in systems where the cluster size distribution is

very polydisperse. Moreover, since the large length scale 10° T
structure near the gel point of DLCA model is characterized 10° B N R,o' ——N_=1 1
by a different fractal dimensioD;=2.6, it is natural to ask 10'E ' N =43 1
whether a similar gel point fractal dimension would be s 3
present in clusters formed by other kinetic models such as 10 r 1
BLCA and RLCA. For these reasons, we have also per- ‘°2_! 3
formed large-scale simulations for the BLCA and RLCA 10'f '
models in three dimensions. The corresponding structure of & 1¢° | E
the largest cluster for monomer volume fractify+0.01 is o'k 3
I, r 7
shown in Figs. 3 and 4. L LE
Similar to the DLCA case, one observes “interference 10 ST |
ripples” and Porod’s lawl (q) ~ q~#] for very largeq probing 10° P 1,001 1
the monomer size. For intermediate valueg|dfiq) shows a 10* | Pua= 0001 1
. D . . F R ;=732a E
power-law behavior-q™", revealing the well-known dilute- B AL v R RPNV A N L ) )
limit BLCA (D;=1.9 and RLCA structure(D;=2.1) in 10° 10°% 10’ 10° 10'
Figs. 3 and 4, respectively. As before, for small values,of qa

the power law gives way to gindependent Rayleigh regime
at earlier times However, the second power-law regime,

seen fat late times in Fig.. 1 and characterized by.a Slope Q gime are present as seen in the DLCA resiitg. 1). For inter-
~2.6 is less pronounced in BLCA and RLCA. The inflection - y2ia values 06, 1(q) shows a power-law behaviong ™", re-

pointin(q) at Rg,l_G_'S also quite weak. Because RLCA clus- vealing the well-known dilute-limit RLCA fractal dimensioD;

ters are less ramified than DLCA CIUSterS, they have to grov. 2.1. However, the second power-|aw regime’ characterized by
to a largerRy g (N~ RY") in order to form a superaggregate. another slope o£2.6(seen in Fig. 1 at late timgand starting at an
Due to the finite simulation size, RLCA does not reach thisinflection point given byR;G is less pronounced in this figure.
point for f,=0.01 until near the end of the simulation. To Solid lines have been drawn at the designated slepg °f) and
remedy this we need to go to highgrand thus to a lower serve only to guide the eye.

FIG. 4. Same as in Fig. 1 except for the three-dimensional
LCA model. Both a Porod regime andgandependent Rayleigh
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FIG. 5. Same as in Fig. 3 except for a monomer volume fraction ]
f,=0.1. Development of the second power-law regime at late times, . _ ]
characterized by another slope ®R.6 and starting around an in- I { |
flection point given b)R;lG is clear for this BLCA simulation. Solid sl { i
lines have been drawn at the designated slepg™f) and serve | |
only to guide the eye. 5| { |

[\
can be clearly seen in these figures, BLCA and RLCA simu-  “~ |
lations show, at smaller length scalgarge q), a fractal di- = {
mension of 1.9 or 2.1, respectively. More importantly, a R 4
model independent large-scakmall q) fractal dimension of 1 ]
2.6 develops at late times, consistent with the DLCA model. 20 1,=01 .
This implies, within the scatter of our daf&2], that the - L=162 1
aggregate of aggregates, or superaggregate, laageascale T T E——
structure independent of the prescribed kinetic model. The P
hybrid nature of the superaggregate is also clear: a different
fractal dimension, characterized by the underlying aggrega- g, 7. Measured crossover length scajg™ as a function of
tion kinetics, is also observed but only over length scalesyass fractal dimensio; and sticking probabilityPy; D; has
smaller than the ideal gel point radius of gyration. been determined from a linear least squares fin@) vsIn(Ry/a)

In Fig. 7 we show the measured crossover length from then the dilute limit (early time. Error in (q)~ was estimated by
simulations, which we denote &g.)™!, as a function of the |ooking at variations in slope from a least squares fit of the two

power-law regimes near the crossover lengtiky Bpace. According

stick

10 e e to our predictiongEq. (11)], (o) *=Ryc. A comparison between
10° :N:‘:’iz L the measuredg,) ™ andRy ¢ is shown in the top figure. The bottom
10* +N:=582 1 figure is a measure of how much the cross over length scale shifts to
10° ::-;‘gﬁ 1 larger values as a function of the sticking probability. Note that
0 _D_N:=12582 ] Psiick=1 corresponds to the diffusion-limited aggregation class.
10 f TN - 2o 1 dilute-limit fractal dimension(top) and sticking probability

S r ] Pstick (bottom). Ry [Eq. (11)] i§ a function of botrDt and
10" r i f,. Thqs we plot(shown as solid Im@ngp as a function of
. D; at fixedf, for f,=0.01, 0.1. Data points &;=1.8, 1.9,

b sanLoa 1 2.1 correspond to the DLCA, BLCA, and RLCA simulation
1 =01 1 results, respectively. The two intermediate points between
10ty :”:(5"2:1 1 BLCA and RLCA correspond to RLCA simulations with
10° & 24 --'----'_2 ol - e Psiick=0.1,0.01. We first notgsee bottom of Fig. )/ that

10 10 10 10 10 (907t is not a strong function oPg. . increases only by

@ a factor of ~2 from the limiting DLCA value atPg;.=1 to
FIG. 6. Same as in Fig. 4 except for a monomer volume fractionstick=0-001. Second, the agreement betwég ' and the
f,=0.1. Development of the second power-law regime at late timegPredictedRy s is quite good considering the assumption of
characterized by another slope ®2.6 and starting around an in- s_pherical (_:Iuster_s_and a monodisperse cluster size distribu-
flection point given byRy % is clear for this RLCA simulation. Solid ~ tion used in derivingRy c. The measuredq,)* follow the
lines have been drawn at the designated slepg ™) and serve same trend as the predicted curve, but all data fall systemati-
only to guide the eye. cally aboveR, . The slight disagreement between the two
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becomes worse with increasirg;. As mentioned above, tal morphology. Further support for this picture comes from
RLCA is more polydisperse in cluster size than both DLCAnoting that the large length scale fractal dimensi@n,
and BLCA with DLCA being the least polydisperse. It thus =2.6, is practically independertvithin the scatter of our
appears that increasing polydispersity pushes the crossoveéatg of the kinetic model used to produce such a cluster. It is
length to aslightly higher valughan that predicted frorR; s only at small length scales, below the critical radius of gyra-
which is defined assuming a monodisperse distribution.  tion, that the prescribed kinetic model dictates cluster struc-
ture.
To further analyze the similarity and difference between
B. Comparison with backbone percolation clusters kinetically grown clusters at the gel point and static percola-

What is the significance of the slope of magnitude 2.6 afion backbone, we have performed three-dimensional perco-
large length scales in the OLMC results? This indicates dation simulations. We limit ourselves to site percolation
mass fractal dimension db;=2.6, very close to the ac- Since all percolgtion modt_als yield r_nass_fractalldlmensmn
cepted mass fractal dimensi@n for a percolating backbone Df=2.55[18]. Sites on a simple cubic lattice of side length
in three-dimensions , and in agreement with other simulatiot- =256 and lattice spacing=d,=1, were populated with
results of the sol-gel transitiof4]. Before comparing our Probability p=p.=0.31[18], wheredy, is the monomer di-
results with percolation though, a few comments are in orde@meter and; the percolation threshold. The backbone clus-
One intuitively expects that the aggregation and percolatiofer was then isolated arid) calculated according to E(B).
models have drastically different properties, in part because Results, averaged over 10 statistically independent trials,
the former isdynamicand the latterstatic, but more so be- are shown in Fig. 8. The axis is scaled byR;c; qRyc=1
cause percolation represents a state of criticality and aggré&orresponds to scattering which probes length scales on the
gation models do not. Indeed different properties are foun@rder of Rys. For the percolation simulatioRRyc=a the
when comparing cluster size distributions and correspondingtonomer radius. We find thatq) has a power-law regime
scaling lawg(for instance, see Ref18] for percolation scal- ~with exponentD=2.5, verifying the archetypical percola-
ing laws and Fig. 17 of Re{3] for a comparison of scaling tion backbone mass fractal structure. AR;s=1, 1(q)
in percolation and DLCA; for a full discussion of dilute-limit crosses over to the well-known spherical particle form factor.
cluster size distribution scaling laws see Hé#]). However, This crossover at the monomer length scale is expected and
for aggregating models, a critical behavior develops at thds also seen in the OLMC resul{&igs. 1-6. This is, how-
sol-gel transition and this transition has a lengthy history ofever, not the crossover of interest. We also show in Fig. 8
being compared to percolation, via the mass fractal dimenk(q) of the gel point largest cluster for DLCA &=0.01. At
sion [3,5,23-26. Percolation clusters can be characterizedow ¢ results show a power-law behavior wilbx=2.5, as
by a range of fractal dimensions, describing both mass angimilarly found for the percolation backbone and also shown
surface structure. We choose however, to address tha Fig. 1. We must stress here that although this structure has
“percolation-like” behavior of the spanning cluster in the been previously seen in simulation, it was never discussed as
OLMC only through the mass fractal dimension. Althoughto over which length scale it occurs, nor how it develops.
this is not a complete analysis in the strict sense, it is th&he q axis is again scaled bR;s, but we now use the
mass fractal dimension which yields structural detailspredicted ideal gel point radius of gyration for DLCA at this
through light scattering measurements. monomer volume fraction, given by E¢ll). At qR;c=1,

Since the large-scale mass fractal dimension of the large$tq) shows an inflection to yet another power-law regime
cluster near the gel point is almost identical to the massvith smaller slope ca=1.8, the dilute-limit mass fractal di-
fractal dimension of a percolating backbone, we propose aension for DLCA clusters. This clearly supports our pro-
picture of sol-gel transition in irreversibly aggregating sys-posed picture of how, structurally, the sol-gel transition pro-
tems. A dilute sol aggregates via DLCA, RLCA, or BLCA ceeds. Individual dilute-limit clusters act as “monomers” in
kinetics yielding aggregates with fractal dimensions of 1.8 oithe percolation scenario. Instead of the monomeric structure
2.1, or 1.9, respectively. Because these aggregate fractal dieing dictated by the spherical form factor, each effective
mensions are less than the spatial dimension, the effectiveite now has a structure dictated by the prescribed kinetic
aggregate volume fractiofthe occupied volume of the ag- model when dilute. In irreversibly aggregating systems the
gregates normalized by the system volyrapproaches unity early time structure becomes frozen within the percolated
as the aggregation proceeds. At the ideal gel point, the agretwork. This hybrid or biphasé structure in mass fractal
gregates are so crowded that they percolate to form a supegimension sets the largest cluster apart from the archetypical
aggregate made up of fractal aggregates with an average sipercolation backbone. Since our analysis is given in terms of

of Ry the mass fractal dimension, it is amenable to experimental
Instead of the traditional percolation scenario of staticallyverification from light scattering data.
placing particles on latticésite percolatioip or off lattice Further comparison with percolation can be made by

(continuum percolation at increasingly larger monomer vol- probing the cluster-ensemble averaged structure. Static per-
ume fractions until a spanning cluster is formed, aggregatingolation systems at the percolation threshold are known to
systems forming fractal-like clusters eventually percolateconsist of a backbone witD;=2.55 and smaller clusters,
due to an increasing cluster volume fractijras the system known as lattice animals, with;=1.9. We can probe the
evolves. This implies that the largest cluster is formed by thalifference in the ensemble averaged between the kinetic
percolation of smaller clusters, each with a dilute-limit frac-OLMC and static percolation by plotting 10Y) versus
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E 3D Site Percolation 3 3 oo Qe
' ona Cubic Lattice E
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F p=0.31 3 10'f E
10? E- 1 [
E 3 10°E .
Bt 1 E
Z 10 r 3 r
= 3 3 4 L
= E E
10 ] 10°F .
E E 3 E
10° i ] s
E ] 10'E » 3dDLCA,f,=0.01 3
Ay o 3d Site percolation, p = p, 3
10-6 " " A — Pren sl °
10° 10° 10" 10° o R SN
r/ L 10° 10" 10
» R,/a
10" [ FIG. 9. Comparison of mass scaling for the ensemble of clusters
10t between three-dimensional DLCA at the gel point and three-
r dimensional site percolation at the percolation threshold. Solid lines
-3 . . .
10 r are from performing a linear least squares fit.
10* r ]
— 10° ! formed measurements of aggregate structure in an acetylene
= F (C,H,)/air diffusion flame, using static light scatterifi2g].
10 . . . .
4 The scattered light intensit{q) was measured as a function
-7 . . .
wr of height above the burner. Results are showS(g$ in Fig.
10° 1 10.
10° [ [~ OLCA € =001 At early time, and low heights in the flame, we find typi-
[ —a— 3d Site Percolation, L=256, p=0.31 . .
ook e e cal DLCA soot clusters witlD¢=1.8. The power-law regime

10° 10° 10% 10" 10° 10' 10° gives way atq'=R; to a g independent Rayleigh regime.
aR However, with increasing height above the burner, an in-
creased intensity at lowg develops, marked by a second
FIG. 8. (Top) Three-dimensional site percolation backbone power-law regime with slop®;=2.6. Is this second struc-
structure ap=p;. The top graph shows the real space analysis usingure then due to crowding and subsequent percolation of
the method of concentric circles. The solid line is a result of per-c|ysters within the flame?
forming a least squares fit over the range 601L <0.4. (Bot- Over the range of heights measured, the flame narrows. At
tom)The bottom graph shows tlggspace structure represented by |qyy height the measuref} with D;=1.8 yields angG well
S(g) and calculated according to E@). To directly compare with 5+ of range of the observeth,)™ . However, at larger

the DLCA largest cluster results, Wg have scaI(_ed the horlzor_1tal ax'ﬁeights, assuming mass conservation, the narrowing of the
by Ry such thatqR;s=1. For site percolatiorRys=a. With

96

DLCA, we have usedR, ¢ calculated according to Eqll), with ————rrr ey
D;=1.8 andf,=0.01. Solid lines have been drawn at the designated F = he15cm
slope(~qgPf) and serve only to guide the eye. 10k 18 o hw=i2em|
4 h=10cm
v v v v h=7cm
log(Ry) for the ensemble of clusters. Results are shown ol : ::iﬁﬂ i
in Fig. 9. The solid lines are from a linear least squares fit L Sl
yielding a slope oD;. These two values are quite different, _ } s * h=1cm | 1
and imply different distributions db; amongst the ensemble & 3
in these two systems. Although there are similarities between F 3
the largest cluster and the backbone of static percolation, the 102 4
ensemble of clusters in the OLMC at the gel point and static F § %, -1.8
percolation is structurally different. oL %oy ]
10° 10° 10* 10°

C. Comparison with experiment

. . N om’”
It is well established that soot in diffusion flames aggre- alem’)

gates under DLCA condition27]. The advantage to study-  FIG. 10. Scattered light intensity from al8,/air flame at dif-
ing aggregation in a sooty flame is that the aggregation timéerent height above the burner. Results from Soreretea. [28].
is coupled to the height above the flame burner allowingSolid lines are have been drawn at the designated $tope®f) and
different aggregation times to be easily probed. We have peserve only to guide the eye.
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flame results in a largef,. This yields a value oR;¢ in result from the prescribed kinetic model by which the system
reasonable agreement wi(tqgl), implying that what we ob- evolves.
serve in simulation is happening in the sooting flame. We
note however, that shear forces, possibly present in the V. CONCLUSIONS
flame, could cause the clusters to restructure and thus raise
D;:. Although the experimental and simulation results appear We have simulated cluster-cluster aggregation for the
to have good agreement, this needs to be ruled out beforediffusion-limited (DLCA), ballistic-limited (BLCA), and
definitive conclusion can be made. reaction-limited(RLCA) aggregation classes, and covering
Studies of gel structure are vast and numerous. For inthree orders of magnitude of monomer volume fracfiprt
stance, structure of latex, polystyrene, and particulate silicaarly time, when dilute as measured by the cluster volume
and gold dispersions have been intensely investigated, vifaction fS, we find archetypical solid particle clusters of
static light scattering, near the gel point within the past 25D;=1.8,1.9,2.1 for DLCA, BLCA, and RLCA, respec-
years[29-34. Interestingly, none has shown a crossover totively. As the system evolves and becomes de(iSe- 1),
percolation, and many conclude that the gel structure is wellhe largest cluster in the systems develops a two-phgse
described by either the DLCA or RLCA models. We haveprid morphology characterized by a fractal dimension ca. 2.6
used the values df, from these past studies to calcul&g;  over large length scales, independéntthin the scatter of
and compareR;, with the smallq range of the measured our data of aggregation class, and a smaller fractal dimen-
light scattering data. Of these, most light scattering spectrgion at small length scales. We find that the small length
were cut off either prior to reaching=R}¢, or within a  scale morphology of the largest cluster is equivalent to the
factor of 2 beyondR; . Several studies extended theange dilute-limit small cluster morphology, which is dependent on
approximately one order of magnitude beyd?ilgg“G but the  aggregation class. This suggests that the largest cluster is an
systems appeared to be either in the RLCA regime or were aiggregate of smaller aggregates. We call this large cluster a
such a high monomer volume fraction that the monomerssuperaggregate.”
themselves percolated. Our results imply that cluster growth Our simulation results provide a picture of how the sol-
a few orders of magnitude beyoiR} ; may be necessary in gel transition proceeds structurally. A dilute sol aggregates
RLCA systems in order to see the crossover. via DLCA, RLCA, or BLCA kinetics yielding aggregates
Fragmentation may also be present in real systems. Bewith fractal dimensions of 1.8, 2.1, or 1.9, respectively. At
cause fragmentation does not occur over any specific lengtihe ideal gel point, the aggregates are so crowded that they
scale where the monomer coordination number is low, repercolate to form a superaggregate made up of fractal aggre-
peatedly breaking the clusters may wash out the crossovejates with an average size Bf c. This scenario of how the
length. Moreover, colloidal particles typically interact with spanning cluster forms in simulations of aggregating sols is
finite magnitude over length scales of one to several particlgew to our work. The simulated DLCA length scale marking
diameters, where DLCA assumes infinite attraction at conthe crossover between the two morphologies, termed the
tact. Past work has shown that depending on the magnitudgitical radius of gyration, is in good agreement with a cal-
and range of the interaction potential the percolation thresheulation based on a monodisperse cluster size distribution.
old increases or decreasgy,3§. BLCA and RLCA simulation results, where polydispersity in
Several studies have reported on an increase in mass fragtuster size is larger than DLCA, show a crossover length
tal dimension in gelled suspensions, but attribute the changscale systematically larger than the monodisperse prediction.
to either restructuring due to aging, or direct inclusion ofwe find qualitative agreement between our simulation results
restructuring at the monomer level within the simulation de-and experimental results of aggregating soot clusters.
tails [39—41. Moreover, restructuring results in an increased
mass fractal dimension over the entire cluster length scale, ACKNOWLEDGMENTS
i.e., there is no crossover length beyond the monomer size.
Our algorithm does not incorporate aging or restructuring, Financial support was given by NASA grant Grant No.
and thus the new structure and locationgispace can only NAG 3-2360 and NSF grant Grant No. CTS080017.
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